extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1C24 = C22×C4.D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).1C2^4 | 128,1617 |
(C2×C4).2C24 = C22×C4.10D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).2C2^4 | 128,1618 |
(C2×C4).3C24 = C2×M4(2).8C22 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).3C2^4 | 128,1619 |
(C2×C4).4C24 = M4(2).24C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | 8+ | (C2xC4).4C2^4 | 128,1620 |
(C2×C4).5C24 = M4(2).25C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | 8- | (C2xC4).5C2^4 | 128,1621 |
(C2×C4).6C24 = C2×D4⋊4D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).6C2^4 | 128,1746 |
(C2×C4).7C24 = C2×D4.9D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).7C2^4 | 128,1747 |
(C2×C4).8C24 = C2×D4.8D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).8C2^4 | 128,1748 |
(C2×C4).9C24 = C2×D4.10D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).9C2^4 | 128,1749 |
(C2×C4).10C24 = C42.313C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).10C2^4 | 128,1750 |
(C2×C4).11C24 = M4(2)⋊C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | 8+ | (C2xC4).11C2^4 | 128,1751 |
(C2×C4).12C24 = M4(2).C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | 8- | (C2xC4).12C2^4 | 128,1752 |
(C2×C4).13C24 = C42.12C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | 8+ | (C2xC4).13C2^4 | 128,1753 |
(C2×C4).14C24 = C42.13C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | 8- | (C2xC4).14C2^4 | 128,1754 |
(C2×C4).15C24 = C2×D4.3D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).15C2^4 | 128,1796 |
(C2×C4).16C24 = C2×D4.4D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).16C2^4 | 128,1797 |
(C2×C4).17C24 = C2×D4.5D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).17C2^4 | 128,1798 |
(C2×C4).18C24 = M4(2).10C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).18C2^4 | 128,1799 |
(C2×C4).19C24 = M4(2).37D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | 8+ | (C2xC4).19C2^4 | 128,1800 |
(C2×C4).20C24 = M4(2).38D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | 8- | (C2xC4).20C2^4 | 128,1801 |
(C2×C4).21C24 = D8⋊11D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | 8+ | (C2xC4).21C2^4 | 128,2020 |
(C2×C4).22C24 = D8.13D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | 8- | (C2xC4).22C2^4 | 128,2021 |
(C2×C4).23C24 = D8○SD16 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).23C2^4 | 128,2022 |
(C2×C4).24C24 = D8⋊6D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).24C2^4 | 128,2023 |
(C2×C4).25C24 = D8○D8 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | 4+ | (C2xC4).25C2^4 | 128,2024 |
(C2×C4).26C24 = D8○Q16 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | 4- | (C2xC4).26C2^4 | 128,2025 |
(C2×C4).27C24 = C22×C22⋊Q8 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).27C2^4 | 128,2165 |
(C2×C4).28C24 = C22×C22.D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).28C2^4 | 128,2166 |
(C2×C4).29C24 = C2×C22.19C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).29C2^4 | 128,2167 |
(C2×C4).30C24 = C22×C42.C2 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).30C2^4 | 128,2169 |
(C2×C4).31C24 = C22×C42⋊2C2 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).31C2^4 | 128,2170 |
(C2×C4).32C24 = C2×C23.36C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).32C2^4 | 128,2171 |
(C2×C4).33C24 = C22×C4⋊Q8 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).33C2^4 | 128,2173 |
(C2×C4).34C24 = C2×C22.26C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).34C2^4 | 128,2174 |
(C2×C4).35C24 = C2×C23.37C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).35C2^4 | 128,2175 |
(C2×C4).36C24 = C22.33C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).36C2^4 | 128,2176 |
(C2×C4).37C24 = C2×C23⋊3D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).37C2^4 | 128,2177 |
(C2×C4).38C24 = C2×C22.29C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).38C2^4 | 128,2178 |
(C2×C4).39C24 = C2×C23.38C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).39C2^4 | 128,2179 |
(C2×C4).40C24 = C2×C22.31C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).40C2^4 | 128,2180 |
(C2×C4).41C24 = C22.38C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).41C2^4 | 128,2181 |
(C2×C4).42C24 = C2×C22.32C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).42C2^4 | 128,2182 |
(C2×C4).43C24 = C2×C22.33C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).43C2^4 | 128,2183 |
(C2×C4).44C24 = C2×C22.34C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).44C2^4 | 128,2184 |
(C2×C4).45C24 = C2×C22.35C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).45C2^4 | 128,2185 |
(C2×C4).46C24 = C2×C22.36C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).46C2^4 | 128,2186 |
(C2×C4).47C24 = C2×C23⋊2Q8 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).47C2^4 | 128,2188 |
(C2×C4).48C24 = C2×C23.41C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).48C2^4 | 128,2189 |
(C2×C4).49C24 = C22.47C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).49C2^4 | 128,2190 |
(C2×C4).50C24 = C22.48C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).50C2^4 | 128,2191 |
(C2×C4).51C24 = C22.49C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).51C2^4 | 128,2192 |
(C2×C4).52C24 = C22.50C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).52C2^4 | 128,2193 |
(C2×C4).53C24 = C2×D42 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).53C2^4 | 128,2194 |
(C2×C4).54C24 = C2×D4⋊5D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).54C2^4 | 128,2195 |
(C2×C4).55C24 = C2×D4⋊6D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).55C2^4 | 128,2196 |
(C2×C4).56C24 = C2×Q8⋊5D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).56C2^4 | 128,2197 |
(C2×C4).57C24 = C2×D4×Q8 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).57C2^4 | 128,2198 |
(C2×C4).58C24 = C2×C22.45C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).58C2^4 | 128,2201 |
(C2×C4).59C24 = C2×C22.46C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).59C2^4 | 128,2202 |
(C2×C4).60C24 = C2×D4⋊3Q8 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).60C2^4 | 128,2204 |
(C2×C4).61C24 = C2×C22.49C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).61C2^4 | 128,2205 |
(C2×C4).62C24 = C2×C22.50C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).62C2^4 | 128,2206 |
(C2×C4).63C24 = C2×Q8⋊3Q8 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).63C2^4 | 128,2208 |
(C2×C4).64C24 = C2×Q82 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).64C2^4 | 128,2209 |
(C2×C4).65C24 = Q8×C4○D4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).65C2^4 | 128,2210 |
(C2×C4).66C24 = C2×C22.53C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).66C2^4 | 128,2211 |
(C2×C4).67C24 = C22.73C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).67C2^4 | 128,2216 |
(C2×C4).68C24 = C22.74C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).68C2^4 | 128,2217 |
(C2×C4).69C24 = C22.75C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).69C2^4 | 128,2218 |
(C2×C4).70C24 = C22.77C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).70C2^4 | 128,2220 |
(C2×C4).71C24 = C22.78C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).71C2^4 | 128,2221 |
(C2×C4).72C24 = C22.79C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).72C2^4 | 128,2222 |
(C2×C4).73C24 = C22.81C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).73C2^4 | 128,2224 |
(C2×C4).74C24 = C22.83C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).74C2^4 | 128,2226 |
(C2×C4).75C24 = C22.84C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).75C2^4 | 128,2227 |
(C2×C4).76C24 = C4⋊2+ 1+4 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).76C2^4 | 128,2228 |
(C2×C4).77C24 = C22.87C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).77C2^4 | 128,2230 |
(C2×C4).78C24 = C22.88C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).78C2^4 | 128,2231 |
(C2×C4).79C24 = C22.89C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).79C2^4 | 128,2232 |
(C2×C4).80C24 = C22.90C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).80C2^4 | 128,2233 |
(C2×C4).81C24 = C22.91C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).81C2^4 | 128,2234 |
(C2×C4).82C24 = C22.92C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).82C2^4 | 128,2235 |
(C2×C4).83C24 = C22.93C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).83C2^4 | 128,2236 |
(C2×C4).84C24 = C22.94C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).84C2^4 | 128,2237 |
(C2×C4).85C24 = C22.95C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).85C2^4 | 128,2238 |
(C2×C4).86C24 = C22.96C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).86C2^4 | 128,2239 |
(C2×C4).87C24 = C22.97C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).87C2^4 | 128,2240 |
(C2×C4).88C24 = C22.98C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).88C2^4 | 128,2241 |
(C2×C4).89C24 = C22.99C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).89C2^4 | 128,2242 |
(C2×C4).90C24 = C22.100C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).90C2^4 | 128,2243 |
(C2×C4).91C24 = C22.101C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).91C2^4 | 128,2244 |
(C2×C4).92C24 = C22.102C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).92C2^4 | 128,2245 |
(C2×C4).93C24 = C22.103C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).93C2^4 | 128,2246 |
(C2×C4).94C24 = C22.104C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).94C2^4 | 128,2247 |
(C2×C4).95C24 = C22.105C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).95C2^4 | 128,2248 |
(C2×C4).96C24 = C22.106C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).96C2^4 | 128,2249 |
(C2×C4).97C24 = C22.107C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).97C2^4 | 128,2250 |
(C2×C4).98C24 = C22.108C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).98C2^4 | 128,2251 |
(C2×C4).99C24 = C23.144C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).99C2^4 | 128,2252 |
(C2×C4).100C24 = C22.110C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).100C2^4 | 128,2253 |
(C2×C4).101C24 = C22.111C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).101C2^4 | 128,2254 |
(C2×C4).102C24 = C23.146C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).102C2^4 | 128,2255 |
(C2×C4).103C24 = C22.113C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).103C2^4 | 128,2256 |
(C2×C4).104C24 = C2×C22.54C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).104C2^4 | 128,2257 |
(C2×C4).105C24 = C2×C24⋊C22 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).105C2^4 | 128,2258 |
(C2×C4).106C24 = C2×C22.56C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).106C2^4 | 128,2259 |
(C2×C4).107C24 = C2×C22.57C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).107C2^4 | 128,2260 |
(C2×C4).108C24 = C22.118C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).108C2^4 | 128,2261 |
(C2×C4).109C24 = C2×C22.58C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).109C2^4 | 128,2262 |
(C2×C4).110C24 = C22.120C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).110C2^4 | 128,2263 |
(C2×C4).111C24 = C42⋊C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).111C2^4 | 128,2264 |
(C2×C4).112C24 = C22.122C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).112C2^4 | 128,2265 |
(C2×C4).113C24 = C22.123C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).113C2^4 | 128,2266 |
(C2×C4).114C24 = C22.124C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).114C2^4 | 128,2267 |
(C2×C4).115C24 = C22.125C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).115C2^4 | 128,2268 |
(C2×C4).116C24 = C22.126C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).116C2^4 | 128,2269 |
(C2×C4).117C24 = C22.127C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).117C2^4 | 128,2270 |
(C2×C4).118C24 = C22.128C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).118C2^4 | 128,2271 |
(C2×C4).119C24 = C22.129C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).119C2^4 | 128,2272 |
(C2×C4).120C24 = C22.130C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).120C2^4 | 128,2273 |
(C2×C4).121C24 = C22.131C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).121C2^4 | 128,2274 |
(C2×C4).122C24 = C22.132C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).122C2^4 | 128,2275 |
(C2×C4).123C24 = C22.133C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).123C2^4 | 128,2276 |
(C2×C4).124C24 = C22.134C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).124C2^4 | 128,2277 |
(C2×C4).125C24 = C22.135C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).125C2^4 | 128,2278 |
(C2×C4).126C24 = C22.136C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).126C2^4 | 128,2279 |
(C2×C4).127C24 = C22.137C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).127C2^4 | 128,2280 |
(C2×C4).128C24 = C22.138C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).128C2^4 | 128,2281 |
(C2×C4).129C24 = C22.139C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).129C2^4 | 128,2282 |
(C2×C4).130C24 = C22.140C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).130C2^4 | 128,2283 |
(C2×C4).131C24 = C22.141C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).131C2^4 | 128,2284 |
(C2×C4).132C24 = C22.142C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).132C2^4 | 128,2285 |
(C2×C4).133C24 = C22.143C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).133C2^4 | 128,2286 |
(C2×C4).134C24 = C22.144C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).134C2^4 | 128,2287 |
(C2×C4).135C24 = C22.145C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).135C2^4 | 128,2288 |
(C2×C4).136C24 = C22.146C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).136C2^4 | 128,2289 |
(C2×C4).137C24 = C22.147C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).137C2^4 | 128,2290 |
(C2×C4).138C24 = C22.148C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).138C2^4 | 128,2291 |
(C2×C4).139C24 = C22.149C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).139C2^4 | 128,2292 |
(C2×C4).140C24 = C22.150C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).140C2^4 | 128,2293 |
(C2×C4).141C24 = C22.151C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).141C2^4 | 128,2294 |
(C2×C4).142C24 = C22.152C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).142C2^4 | 128,2295 |
(C2×C4).143C24 = C22.153C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).143C2^4 | 128,2296 |
(C2×C4).144C24 = C22.154C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).144C2^4 | 128,2297 |
(C2×C4).145C24 = C22.155C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).145C2^4 | 128,2298 |
(C2×C4).146C24 = C22.156C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).146C2^4 | 128,2299 |
(C2×C4).147C24 = C22.157C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).147C2^4 | 128,2300 |
(C2×C4).148C24 = C8.C24 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).148C2^4 | 128,2316 |
(C2×C4).149C24 = D8⋊C23 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | 8+ | (C2xC4).149C2^4 | 128,2317 |
(C2×C4).150C24 = C4.C25 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | 8- | (C2xC4).150C2^4 | 128,2318 |
(C2×C4).151C24 = 2+ 1+6 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 16 | 8+ | (C2xC4).151C2^4 | 128,2326 |
(C2×C4).152C24 = 2- 1+6 | φ: C24/C22 → C22 ⊆ Aut C2×C4 | 32 | 8- | (C2xC4).152C2^4 | 128,2327 |
(C2×C4).153C24 = C23×C4⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).153C2^4 | 128,2152 |
(C2×C4).154C24 = C22×C42⋊C2 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).154C2^4 | 128,2153 |
(C2×C4).155C24 = D4×C22×C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).155C2^4 | 128,2154 |
(C2×C4).156C24 = Q8×C22×C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).156C2^4 | 128,2155 |
(C2×C4).157C24 = C2×C22.11C24 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).157C2^4 | 128,2157 |
(C2×C4).158C24 = C2×C23.32C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).158C2^4 | 128,2158 |
(C2×C4).159C24 = C2×C23.33C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).159C2^4 | 128,2159 |
(C2×C4).160C24 = C22.14C25 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).160C2^4 | 128,2160 |
(C2×C4).161C24 = C4×2+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).161C2^4 | 128,2161 |
(C2×C4).162C24 = C4×2- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).162C2^4 | 128,2162 |
(C2×C4).163C24 = C22×C4.4D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).163C2^4 | 128,2168 |
(C2×C4).164C24 = C22.44C25 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).164C2^4 | 128,2187 |
(C2×C4).165C24 = C2×C22.47C24 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).165C2^4 | 128,2203 |
(C2×C4).166C24 = C22.64C25 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).166C2^4 | 128,2207 |
(C2×C4).167C24 = C22.71C25 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).167C2^4 | 128,2214 |
(C2×C4).168C24 = C22.72C25 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).168C2^4 | 128,2215 |
(C2×C4).169C24 = C22.76C25 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).169C2^4 | 128,2219 |
(C2×C4).170C24 = C22.80C25 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).170C2^4 | 128,2223 |
(C2×C4).171C24 = C22×D4⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).171C2^4 | 128,1622 |
(C2×C4).172C24 = C22×Q8⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).172C2^4 | 128,1623 |
(C2×C4).173C24 = C2×C23.24D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).173C2^4 | 128,1624 |
(C2×C4).174C24 = C2×C23.37D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).174C2^4 | 128,1625 |
(C2×C4).175C24 = C2×C23.38D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).175C2^4 | 128,1626 |
(C2×C4).176C24 = C2×C23.36D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).176C2^4 | 128,1627 |
(C2×C4).177C24 = C24.98D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).177C2^4 | 128,1628 |
(C2×C4).178C24 = 2+ 1+4⋊5C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).178C2^4 | 128,1629 |
(C2×C4).179C24 = 2- 1+4⋊4C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).179C2^4 | 128,1630 |
(C2×C4).180C24 = C22×C4≀C2 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).180C2^4 | 128,1631 |
(C2×C4).181C24 = C2×C42⋊C22 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).181C2^4 | 128,1632 |
(C2×C4).182C24 = 2- 1+4⋊5C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).182C2^4 | 128,1633 |
(C2×C4).183C24 = C22×C4.Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).183C2^4 | 128,1639 |
(C2×C4).184C24 = C22×C2.D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).184C2^4 | 128,1640 |
(C2×C4).185C24 = C2×C23.25D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).185C2^4 | 128,1641 |
(C2×C4).186C24 = C2×M4(2)⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).186C2^4 | 128,1642 |
(C2×C4).187C24 = C24.100D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).187C2^4 | 128,1643 |
(C2×C4).188C24 = C4○D4.7Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).188C2^4 | 128,1644 |
(C2×C4).189C24 = C4○D4.8Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).189C2^4 | 128,1645 |
(C2×C4).190C24 = C22×C8.C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).190C2^4 | 128,1646 |
(C2×C4).191C24 = C2×M4(2).C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).191C2^4 | 128,1647 |
(C2×C4).192C24 = M4(2).29C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).192C2^4 | 128,1648 |
(C2×C4).193C24 = C2×C4×D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).193C2^4 | 128,1668 |
(C2×C4).194C24 = C2×C4×SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).194C2^4 | 128,1669 |
(C2×C4).195C24 = C2×C4×Q16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).195C2^4 | 128,1670 |
(C2×C4).196C24 = C4×C4○D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).196C2^4 | 128,1671 |
(C2×C4).197C24 = C2×SD16⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).197C2^4 | 128,1672 |
(C2×C4).198C24 = C2×Q16⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).198C2^4 | 128,1673 |
(C2×C4).199C24 = C2×D8⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).199C2^4 | 128,1674 |
(C2×C4).200C24 = C42.383D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).200C2^4 | 128,1675 |
(C2×C4).201C24 = C4×C8⋊C22 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).201C2^4 | 128,1676 |
(C2×C4).202C24 = C4×C8.C22 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).202C2^4 | 128,1677 |
(C2×C4).203C24 = C42.275C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).203C2^4 | 128,1678 |
(C2×C4).204C24 = C42.276C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).204C2^4 | 128,1679 |
(C2×C4).205C24 = C42.277C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).205C2^4 | 128,1680 |
(C2×C4).206C24 = C42.278C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).206C2^4 | 128,1681 |
(C2×C4).207C24 = C42.279C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).207C2^4 | 128,1682 |
(C2×C4).208C24 = C42.280C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).208C2^4 | 128,1683 |
(C2×C4).209C24 = C42.281C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).209C2^4 | 128,1684 |
(C2×C4).210C24 = C2×C8○D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).210C2^4 | 128,1685 |
(C2×C4).211C24 = C2×C8.26D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).211C2^4 | 128,1686 |
(C2×C4).212C24 = C42.283C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).212C2^4 | 128,1687 |
(C2×C4).213C24 = M4(2).51D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).213C2^4 | 128,1688 |
(C2×C4).214C24 = M4(2)○D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).214C2^4 | 128,1689 |
(C2×C4).215C24 = C2×C22⋊D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).215C2^4 | 128,1728 |
(C2×C4).216C24 = C2×C22⋊SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).216C2^4 | 128,1729 |
(C2×C4).217C24 = C2×Q8⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).217C2^4 | 128,1730 |
(C2×C4).218C24 = C2×C22⋊Q16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).218C2^4 | 128,1731 |
(C2×C4).219C24 = C2×D4⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).219C2^4 | 128,1732 |
(C2×C4).220C24 = C2×D4.7D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).220C2^4 | 128,1733 |
(C2×C4).221C24 = C24.103D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).221C2^4 | 128,1734 |
(C2×C4).222C24 = C24.177D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).222C2^4 | 128,1735 |
(C2×C4).223C24 = C24.178D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).223C2^4 | 128,1736 |
(C2×C4).224C24 = C24.104D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).224C2^4 | 128,1737 |
(C2×C4).225C24 = C24.105D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).225C2^4 | 128,1738 |
(C2×C4).226C24 = C24.106D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).226C2^4 | 128,1739 |
(C2×C4).227C24 = C4○D4⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).227C2^4 | 128,1740 |
(C2×C4).228C24 = D4.(C2×D4) | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).228C2^4 | 128,1741 |
(C2×C4).229C24 = (C2×Q8)⋊16D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).229C2^4 | 128,1742 |
(C2×C4).230C24 = Q8.(C2×D4) | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).230C2^4 | 128,1743 |
(C2×C4).231C24 = (C2×D4)⋊21D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).231C2^4 | 128,1744 |
(C2×C4).232C24 = (C2×Q8)⋊17D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).232C2^4 | 128,1745 |
(C2×C4).233C24 = C2×C4⋊D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).233C2^4 | 128,1761 |
(C2×C4).234C24 = C2×D4.D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).234C2^4 | 128,1762 |
(C2×C4).235C24 = C2×D4.2D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).235C2^4 | 128,1763 |
(C2×C4).236C24 = C2×C4⋊SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).236C2^4 | 128,1764 |
(C2×C4).237C24 = C2×C4⋊2Q16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).237C2^4 | 128,1765 |
(C2×C4).238C24 = C2×Q8.D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).238C2^4 | 128,1766 |
(C2×C4).239C24 = C42.443D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).239C2^4 | 128,1767 |
(C2×C4).240C24 = C42.211D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).240C2^4 | 128,1768 |
(C2×C4).241C24 = C42.212D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).241C2^4 | 128,1769 |
(C2×C4).242C24 = C42.444D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).242C2^4 | 128,1770 |
(C2×C4).243C24 = C42.445D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).243C2^4 | 128,1771 |
(C2×C4).244C24 = C42.446D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).244C2^4 | 128,1772 |
(C2×C4).245C24 = C42.14C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).245C2^4 | 128,1773 |
(C2×C4).246C24 = C42.15C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).246C2^4 | 128,1774 |
(C2×C4).247C24 = C42.16C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).247C2^4 | 128,1775 |
(C2×C4).248C24 = C42.17C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).248C2^4 | 128,1776 |
(C2×C4).249C24 = C42.18C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).249C2^4 | 128,1777 |
(C2×C4).250C24 = C42.19C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).250C2^4 | 128,1778 |
(C2×C4).251C24 = C2×C8⋊8D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).251C2^4 | 128,1779 |
(C2×C4).252C24 = C2×C8⋊7D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).252C2^4 | 128,1780 |
(C2×C4).253C24 = C2×C8.18D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).253C2^4 | 128,1781 |
(C2×C4).254C24 = C24.144D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).254C2^4 | 128,1782 |
(C2×C4).255C24 = C2×C8⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).255C2^4 | 128,1783 |
(C2×C4).256C24 = C2×C8⋊2D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).256C2^4 | 128,1784 |
(C2×C4).257C24 = C2×C8.D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).257C2^4 | 128,1785 |
(C2×C4).258C24 = C24.110D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).258C2^4 | 128,1786 |
(C2×C4).259C24 = M4(2)⋊14D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).259C2^4 | 128,1787 |
(C2×C4).260C24 = M4(2)⋊15D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).260C2^4 | 128,1788 |
(C2×C4).261C24 = (C2×C8)⋊11D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).261C2^4 | 128,1789 |
(C2×C4).262C24 = (C2×C8)⋊12D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).262C2^4 | 128,1790 |
(C2×C4).263C24 = C8.D4⋊C2 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).263C2^4 | 128,1791 |
(C2×C4).264C24 = (C2×C8)⋊13D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).264C2^4 | 128,1792 |
(C2×C4).265C24 = (C2×C8)⋊14D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).265C2^4 | 128,1793 |
(C2×C4).266C24 = M4(2)⋊16D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).266C2^4 | 128,1794 |
(C2×C4).267C24 = M4(2)⋊17D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).267C2^4 | 128,1795 |
(C2×C4).268C24 = C2×D4⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).268C2^4 | 128,1802 |
(C2×C4).269C24 = C2×D4⋊2Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).269C2^4 | 128,1803 |
(C2×C4).270C24 = C2×D4.Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).270C2^4 | 128,1804 |
(C2×C4).271C24 = C2×Q8⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).271C2^4 | 128,1805 |
(C2×C4).272C24 = C2×C4.Q16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).272C2^4 | 128,1806 |
(C2×C4).273C24 = C2×Q8.Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).273C2^4 | 128,1807 |
(C2×C4).274C24 = C42.447D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).274C2^4 | 128,1808 |
(C2×C4).275C24 = C42.219D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).275C2^4 | 128,1809 |
(C2×C4).276C24 = C42.220D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).276C2^4 | 128,1810 |
(C2×C4).277C24 = C42.448D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).277C2^4 | 128,1811 |
(C2×C4).278C24 = C42.449D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).278C2^4 | 128,1812 |
(C2×C4).279C24 = C42.20C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).279C2^4 | 128,1813 |
(C2×C4).280C24 = C42.21C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).280C2^4 | 128,1814 |
(C2×C4).281C24 = C42.22C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).281C2^4 | 128,1815 |
(C2×C4).282C24 = C42.23C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).282C2^4 | 128,1816 |
(C2×C4).283C24 = C2×C22.D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).283C2^4 | 128,1817 |
(C2×C4).284C24 = C2×C23.47D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).284C2^4 | 128,1818 |
(C2×C4).285C24 = C2×C23.19D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).285C2^4 | 128,1819 |
(C2×C4).286C24 = C2×C23.20D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).286C2^4 | 128,1820 |
(C2×C4).287C24 = C2×C23.46D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).287C2^4 | 128,1821 |
(C2×C4).288C24 = C2×C23.48D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).288C2^4 | 128,1822 |
(C2×C4).289C24 = C24.115D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).289C2^4 | 128,1823 |
(C2×C4).290C24 = C24.183D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).290C2^4 | 128,1824 |
(C2×C4).291C24 = C24.116D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).291C2^4 | 128,1825 |
(C2×C4).292C24 = C24.117D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).292C2^4 | 128,1826 |
(C2×C4).293C24 = C24.118D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).293C2^4 | 128,1827 |
(C2×C4).294C24 = (C2×D4).301D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).294C2^4 | 128,1828 |
(C2×C4).295C24 = (C2×D4).302D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).295C2^4 | 128,1829 |
(C2×C4).296C24 = (C2×D4).303D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).296C2^4 | 128,1830 |
(C2×C4).297C24 = (C2×D4).304D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).297C2^4 | 128,1831 |
(C2×C4).298C24 = C42.221D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).298C2^4 | 128,1832 |
(C2×C4).299C24 = C42.222D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).299C2^4 | 128,1833 |
(C2×C4).300C24 = C42.384D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).300C2^4 | 128,1834 |
(C2×C4).301C24 = C42.223D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).301C2^4 | 128,1835 |
(C2×C4).302C24 = C42.224D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).302C2^4 | 128,1836 |
(C2×C4).303C24 = C42.225D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).303C2^4 | 128,1837 |
(C2×C4).304C24 = C42.450D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).304C2^4 | 128,1838 |
(C2×C4).305C24 = C42.451D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).305C2^4 | 128,1839 |
(C2×C4).306C24 = C42.226D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).306C2^4 | 128,1840 |
(C2×C4).307C24 = C42.227D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).307C2^4 | 128,1841 |
(C2×C4).308C24 = C42.228D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).308C2^4 | 128,1842 |
(C2×C4).309C24 = C42.229D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).309C2^4 | 128,1843 |
(C2×C4).310C24 = C42.230D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).310C2^4 | 128,1844 |
(C2×C4).311C24 = C42.231D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).311C2^4 | 128,1845 |
(C2×C4).312C24 = C42.232D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).312C2^4 | 128,1846 |
(C2×C4).313C24 = C42.233D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).313C2^4 | 128,1847 |
(C2×C4).314C24 = C42.234D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).314C2^4 | 128,1848 |
(C2×C4).315C24 = C42.235D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).315C2^4 | 128,1849 |
(C2×C4).316C24 = C42.352C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).316C2^4 | 128,1850 |
(C2×C4).317C24 = C42.353C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).317C2^4 | 128,1851 |
(C2×C4).318C24 = C42.354C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).318C2^4 | 128,1852 |
(C2×C4).319C24 = C42.355C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).319C2^4 | 128,1853 |
(C2×C4).320C24 = C42.356C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).320C2^4 | 128,1854 |
(C2×C4).321C24 = C42.357C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).321C2^4 | 128,1855 |
(C2×C4).322C24 = C42.358C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).322C2^4 | 128,1856 |
(C2×C4).323C24 = C42.359C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).323C2^4 | 128,1857 |
(C2×C4).324C24 = C42.360C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).324C2^4 | 128,1858 |
(C2×C4).325C24 = C42.361C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).325C2^4 | 128,1859 |
(C2×C4).326C24 = C2×C4.4D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).326C2^4 | 128,1860 |
(C2×C4).327C24 = C2×C4.SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).327C2^4 | 128,1861 |
(C2×C4).328C24 = C2×C42.78C22 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).328C2^4 | 128,1862 |
(C2×C4).329C24 = C42.355D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).329C2^4 | 128,1863 |
(C2×C4).330C24 = C2×C42.28C22 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).330C2^4 | 128,1864 |
(C2×C4).331C24 = C2×C42.29C22 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).331C2^4 | 128,1865 |
(C2×C4).332C24 = C2×C42.30C22 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).332C2^4 | 128,1866 |
(C2×C4).333C24 = C42.239D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).333C2^4 | 128,1867 |
(C2×C4).334C24 = C42.366C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).334C2^4 | 128,1868 |
(C2×C4).335C24 = C42.367C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).335C2^4 | 128,1869 |
(C2×C4).336C24 = C42.240D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).336C2^4 | 128,1870 |
(C2×C4).337C24 = C42.241D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).337C2^4 | 128,1871 |
(C2×C4).338C24 = C42.242D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).338C2^4 | 128,1872 |
(C2×C4).339C24 = C42.243D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).339C2^4 | 128,1873 |
(C2×C4).340C24 = C42.244D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).340C2^4 | 128,1874 |
(C2×C4).341C24 = C2×C8⋊5D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).341C2^4 | 128,1875 |
(C2×C4).342C24 = C2×C8⋊4D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).342C2^4 | 128,1876 |
(C2×C4).343C24 = C2×C4⋊Q16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).343C2^4 | 128,1877 |
(C2×C4).344C24 = C2×C8.12D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).344C2^4 | 128,1878 |
(C2×C4).345C24 = C42.360D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).345C2^4 | 128,1879 |
(C2×C4).346C24 = C2×C8⋊3D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).346C2^4 | 128,1880 |
(C2×C4).347C24 = C2×C8.2D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).347C2^4 | 128,1881 |
(C2×C4).348C24 = C42.247D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).348C2^4 | 128,1882 |
(C2×C4).349C24 = M4(2)⋊7D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).349C2^4 | 128,1883 |
(C2×C4).350C24 = M4(2)⋊8D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).350C2^4 | 128,1884 |
(C2×C4).351C24 = M4(2)⋊9D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).351C2^4 | 128,1885 |
(C2×C4).352C24 = M4(2)⋊10D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).352C2^4 | 128,1886 |
(C2×C4).353C24 = M4(2)⋊11D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).353C2^4 | 128,1887 |
(C2×C4).354C24 = M4(2).20D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).354C2^4 | 128,1888 |
(C2×C4).355C24 = C2×C8⋊3Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).355C2^4 | 128,1889 |
(C2×C4).356C24 = C2×C8.5Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).356C2^4 | 128,1890 |
(C2×C4).357C24 = C2×C8⋊2Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).357C2^4 | 128,1891 |
(C2×C4).358C24 = C42.364D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).358C2^4 | 128,1892 |
(C2×C4).359C24 = C2×C8⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).359C2^4 | 128,1893 |
(C2×C4).360C24 = C42.252D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).360C2^4 | 128,1894 |
(C2×C4).361C24 = M4(2)⋊3Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).361C2^4 | 128,1895 |
(C2×C4).362C24 = M4(2)⋊4Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).362C2^4 | 128,1896 |
(C2×C4).363C24 = M4(2)⋊5Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).363C2^4 | 128,1897 |
(C2×C4).364C24 = M4(2)⋊6Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).364C2^4 | 128,1898 |
(C2×C4).365C24 = C42.365D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).365C2^4 | 128,1899 |
(C2×C4).366C24 = C42.308D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).366C2^4 | 128,1900 |
(C2×C4).367C24 = C42.366D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).367C2^4 | 128,1901 |
(C2×C4).368C24 = C42.367D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).368C2^4 | 128,1902 |
(C2×C4).369C24 = C42.255D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).369C2^4 | 128,1903 |
(C2×C4).370C24 = C42.256D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).370C2^4 | 128,1904 |
(C2×C4).371C24 = C42.385C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).371C2^4 | 128,1905 |
(C2×C4).372C24 = C42.386C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).372C2^4 | 128,1906 |
(C2×C4).373C24 = C42.387C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).373C2^4 | 128,1907 |
(C2×C4).374C24 = C42.388C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).374C2^4 | 128,1908 |
(C2×C4).375C24 = C42.389C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).375C2^4 | 128,1909 |
(C2×C4).376C24 = C42.390C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).376C2^4 | 128,1910 |
(C2×C4).377C24 = C42.391C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).377C2^4 | 128,1911 |
(C2×C4).378C24 = C42.257D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).378C2^4 | 128,1912 |
(C2×C4).379C24 = C42.258D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).379C2^4 | 128,1913 |
(C2×C4).380C24 = C42.259D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).380C2^4 | 128,1914 |
(C2×C4).381C24 = C42.260D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).381C2^4 | 128,1915 |
(C2×C4).382C24 = C42.261D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).382C2^4 | 128,1916 |
(C2×C4).383C24 = C42.262D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).383C2^4 | 128,1917 |
(C2×C4).384C24 = C23⋊3D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).384C2^4 | 128,1918 |
(C2×C4).385C24 = C23⋊4SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).385C2^4 | 128,1919 |
(C2×C4).386C24 = C24.121D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).386C2^4 | 128,1920 |
(C2×C4).387C24 = C23⋊3Q16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).387C2^4 | 128,1921 |
(C2×C4).388C24 = C24.123D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).388C2^4 | 128,1922 |
(C2×C4).389C24 = C24.124D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).389C2^4 | 128,1923 |
(C2×C4).390C24 = C24.125D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).390C2^4 | 128,1924 |
(C2×C4).391C24 = C24.126D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).391C2^4 | 128,1925 |
(C2×C4).392C24 = C24.127D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).392C2^4 | 128,1926 |
(C2×C4).393C24 = C24.128D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).393C2^4 | 128,1927 |
(C2×C4).394C24 = C24.129D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).394C2^4 | 128,1928 |
(C2×C4).395C24 = C24.130D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).395C2^4 | 128,1929 |
(C2×C4).396C24 = C4.2+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).396C2^4 | 128,1930 |
(C2×C4).397C24 = C4.142+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).397C2^4 | 128,1931 |
(C2×C4).398C24 = C4.152+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).398C2^4 | 128,1932 |
(C2×C4).399C24 = C4.162+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).399C2^4 | 128,1933 |
(C2×C4).400C24 = C4.172+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).400C2^4 | 128,1934 |
(C2×C4).401C24 = C4.182+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).401C2^4 | 128,1935 |
(C2×C4).402C24 = C4.192+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).402C2^4 | 128,1936 |
(C2×C4).403C24 = C42.263D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).403C2^4 | 128,1937 |
(C2×C4).404C24 = C42.264D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).404C2^4 | 128,1938 |
(C2×C4).405C24 = C42.265D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).405C2^4 | 128,1939 |
(C2×C4).406C24 = C42.266D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).406C2^4 | 128,1940 |
(C2×C4).407C24 = C42.267D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).407C2^4 | 128,1941 |
(C2×C4).408C24 = C42.268D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).408C2^4 | 128,1942 |
(C2×C4).409C24 = C42.269D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).409C2^4 | 128,1943 |
(C2×C4).410C24 = C42.270D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).410C2^4 | 128,1944 |
(C2×C4).411C24 = C42.271D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).411C2^4 | 128,1945 |
(C2×C4).412C24 = C42.272D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).412C2^4 | 128,1946 |
(C2×C4).413C24 = C42.273D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).413C2^4 | 128,1947 |
(C2×C4).414C24 = C42.274D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).414C2^4 | 128,1948 |
(C2×C4).415C24 = C42.275D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).415C2^4 | 128,1949 |
(C2×C4).416C24 = C42.276D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).416C2^4 | 128,1950 |
(C2×C4).417C24 = C42.277D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).417C2^4 | 128,1951 |
(C2×C4).418C24 = C42.406C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).418C2^4 | 128,1952 |
(C2×C4).419C24 = C42.407C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).419C2^4 | 128,1953 |
(C2×C4).420C24 = C42.408C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).420C2^4 | 128,1954 |
(C2×C4).421C24 = C42.409C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).421C2^4 | 128,1955 |
(C2×C4).422C24 = C42.410C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).422C2^4 | 128,1956 |
(C2×C4).423C24 = C42.411C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).423C2^4 | 128,1957 |
(C2×C4).424C24 = C42.278D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).424C2^4 | 128,1958 |
(C2×C4).425C24 = C42.279D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).425C2^4 | 128,1959 |
(C2×C4).426C24 = C42.280D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).426C2^4 | 128,1960 |
(C2×C4).427C24 = C42.281D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).427C2^4 | 128,1961 |
(C2×C4).428C24 = C42.282D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).428C2^4 | 128,1962 |
(C2×C4).429C24 = C42.283D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).429C2^4 | 128,1963 |
(C2×C4).430C24 = C42.284D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).430C2^4 | 128,1964 |
(C2×C4).431C24 = C42.285D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).431C2^4 | 128,1965 |
(C2×C4).432C24 = C42.286D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).432C2^4 | 128,1966 |
(C2×C4).433C24 = C42.287D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).433C2^4 | 128,1967 |
(C2×C4).434C24 = C42.288D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).434C2^4 | 128,1968 |
(C2×C4).435C24 = C42.289D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).435C2^4 | 128,1969 |
(C2×C4).436C24 = C42.290D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).436C2^4 | 128,1970 |
(C2×C4).437C24 = C42.291D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).437C2^4 | 128,1971 |
(C2×C4).438C24 = C42.292D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).438C2^4 | 128,1972 |
(C2×C4).439C24 = C42.423C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).439C2^4 | 128,1973 |
(C2×C4).440C24 = C42.424C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).440C2^4 | 128,1974 |
(C2×C4).441C24 = C42.425C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).441C2^4 | 128,1975 |
(C2×C4).442C24 = C42.426C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).442C2^4 | 128,1976 |
(C2×C4).443C24 = C42.293D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).443C2^4 | 128,1977 |
(C2×C4).444C24 = C42.294D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).444C2^4 | 128,1978 |
(C2×C4).445C24 = C42.295D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).445C2^4 | 128,1979 |
(C2×C4).446C24 = C42.296D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).446C2^4 | 128,1980 |
(C2×C4).447C24 = C42.297D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).447C2^4 | 128,1981 |
(C2×C4).448C24 = C42.298D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).448C2^4 | 128,1982 |
(C2×C4).449C24 = C42.299D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).449C2^4 | 128,1983 |
(C2×C4).450C24 = C42.300D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).450C2^4 | 128,1984 |
(C2×C4).451C24 = C42.301D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).451C2^4 | 128,1985 |
(C2×C4).452C24 = C42.302D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).452C2^4 | 128,1986 |
(C2×C4).453C24 = C42.303D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).453C2^4 | 128,1987 |
(C2×C4).454C24 = C42.304D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).454C2^4 | 128,1988 |
(C2×C4).455C24 = C4.2- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).455C2^4 | 128,1989 |
(C2×C4).456C24 = C42.25C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).456C2^4 | 128,1990 |
(C2×C4).457C24 = C42.26C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).457C2^4 | 128,1991 |
(C2×C4).458C24 = C42.27C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).458C2^4 | 128,1992 |
(C2×C4).459C24 = C42.28C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).459C2^4 | 128,1993 |
(C2×C4).460C24 = C42.29C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).460C2^4 | 128,1994 |
(C2×C4).461C24 = C42.30C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).461C2^4 | 128,1995 |
(C2×C4).462C24 = D8⋊9D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).462C2^4 | 128,1996 |
(C2×C4).463C24 = SD16⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).463C2^4 | 128,1997 |
(C2×C4).464C24 = SD16⋊6D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).464C2^4 | 128,1998 |
(C2×C4).465C24 = D8⋊10D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).465C2^4 | 128,1999 |
(C2×C4).466C24 = SD16⋊7D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).466C2^4 | 128,2000 |
(C2×C4).467C24 = SD16⋊8D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).467C2^4 | 128,2001 |
(C2×C4).468C24 = Q16⋊9D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).468C2^4 | 128,2002 |
(C2×C4).469C24 = Q16⋊10D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).469C2^4 | 128,2003 |
(C2×C4).470C24 = D8⋊4D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).470C2^4 | 128,2004 |
(C2×C4).471C24 = D8⋊5D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).471C2^4 | 128,2005 |
(C2×C4).472C24 = SD16⋊1D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).472C2^4 | 128,2006 |
(C2×C4).473C24 = SD16⋊2D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).473C2^4 | 128,2007 |
(C2×C4).474C24 = SD16⋊3D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).474C2^4 | 128,2008 |
(C2×C4).475C24 = Q16⋊4D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).475C2^4 | 128,2009 |
(C2×C4).476C24 = Q16⋊5D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).476C2^4 | 128,2010 |
(C2×C4).477C24 = D4×D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).477C2^4 | 128,2011 |
(C2×C4).478C24 = D8⋊12D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).478C2^4 | 128,2012 |
(C2×C4).479C24 = D4×SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).479C2^4 | 128,2013 |
(C2×C4).480C24 = SD16⋊10D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).480C2^4 | 128,2014 |
(C2×C4).481C24 = D8⋊13D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).481C2^4 | 128,2015 |
(C2×C4).482C24 = SD16⋊11D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).482C2^4 | 128,2016 |
(C2×C4).483C24 = Q16⋊12D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).483C2^4 | 128,2017 |
(C2×C4).484C24 = D4×Q16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).484C2^4 | 128,2018 |
(C2×C4).485C24 = Q16⋊13D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).485C2^4 | 128,2019 |
(C2×C4).486C24 = D4⋊4D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).486C2^4 | 128,2026 |
(C2×C4).487C24 = D4⋊7SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).487C2^4 | 128,2027 |
(C2×C4).488C24 = C42.461C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).488C2^4 | 128,2028 |
(C2×C4).489C24 = C42.462C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).489C2^4 | 128,2029 |
(C2×C4).490C24 = D4⋊8SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).490C2^4 | 128,2030 |
(C2×C4).491C24 = D4⋊5Q16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).491C2^4 | 128,2031 |
(C2×C4).492C24 = C42.465C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).492C2^4 | 128,2032 |
(C2×C4).493C24 = C42.466C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).493C2^4 | 128,2033 |
(C2×C4).494C24 = C42.467C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).494C2^4 | 128,2034 |
(C2×C4).495C24 = C42.468C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).495C2^4 | 128,2035 |
(C2×C4).496C24 = C42.469C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).496C2^4 | 128,2036 |
(C2×C4).497C24 = C42.470C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).497C2^4 | 128,2037 |
(C2×C4).498C24 = C42.41C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).498C2^4 | 128,2038 |
(C2×C4).499C24 = C42.42C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).499C2^4 | 128,2039 |
(C2×C4).500C24 = C42.43C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).500C2^4 | 128,2040 |
(C2×C4).501C24 = C42.44C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).501C2^4 | 128,2041 |
(C2×C4).502C24 = C42.45C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).502C2^4 | 128,2042 |
(C2×C4).503C24 = C42.46C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).503C2^4 | 128,2043 |
(C2×C4).504C24 = C42.47C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).504C2^4 | 128,2044 |
(C2×C4).505C24 = C42.48C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).505C2^4 | 128,2045 |
(C2×C4).506C24 = C42.49C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).506C2^4 | 128,2046 |
(C2×C4).507C24 = C42.50C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).507C2^4 | 128,2047 |
(C2×C4).508C24 = C42.51C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).508C2^4 | 128,2048 |
(C2×C4).509C24 = C42.52C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).509C2^4 | 128,2049 |
(C2×C4).510C24 = C42.53C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).510C2^4 | 128,2050 |
(C2×C4).511C24 = C42.54C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).511C2^4 | 128,2051 |
(C2×C4).512C24 = C42.55C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).512C2^4 | 128,2052 |
(C2×C4).513C24 = C42.56C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).513C2^4 | 128,2053 |
(C2×C4).514C24 = C42.471C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).514C2^4 | 128,2054 |
(C2×C4).515C24 = C42.472C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).515C2^4 | 128,2055 |
(C2×C4).516C24 = C42.473C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).516C2^4 | 128,2056 |
(C2×C4).517C24 = C42.474C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).517C2^4 | 128,2057 |
(C2×C4).518C24 = C42.475C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).518C2^4 | 128,2058 |
(C2×C4).519C24 = C42.476C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).519C2^4 | 128,2059 |
(C2×C4).520C24 = C42.477C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).520C2^4 | 128,2060 |
(C2×C4).521C24 = C42.478C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).521C2^4 | 128,2061 |
(C2×C4).522C24 = C42.479C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).522C2^4 | 128,2062 |
(C2×C4).523C24 = C42.480C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).523C2^4 | 128,2063 |
(C2×C4).524C24 = C42.481C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).524C2^4 | 128,2064 |
(C2×C4).525C24 = C42.482C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).525C2^4 | 128,2065 |
(C2×C4).526C24 = D4⋊5D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).526C2^4 | 128,2066 |
(C2×C4).527C24 = D4⋊9SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).527C2^4 | 128,2067 |
(C2×C4).528C24 = C42.485C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).528C2^4 | 128,2068 |
(C2×C4).529C24 = C42.486C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).529C2^4 | 128,2069 |
(C2×C4).530C24 = D4⋊6Q16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).530C2^4 | 128,2070 |
(C2×C4).531C24 = C42.488C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).531C2^4 | 128,2071 |
(C2×C4).532C24 = C42.489C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).532C2^4 | 128,2072 |
(C2×C4).533C24 = C42.490C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).533C2^4 | 128,2073 |
(C2×C4).534C24 = C42.491C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).534C2^4 | 128,2074 |
(C2×C4).535C24 = C42.57C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).535C2^4 | 128,2075 |
(C2×C4).536C24 = C42.58C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).536C2^4 | 128,2076 |
(C2×C4).537C24 = C42.59C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).537C2^4 | 128,2077 |
(C2×C4).538C24 = C42.60C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).538C2^4 | 128,2078 |
(C2×C4).539C24 = C42.61C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).539C2^4 | 128,2079 |
(C2×C4).540C24 = C42.62C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).540C2^4 | 128,2080 |
(C2×C4).541C24 = C42.63C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).541C2^4 | 128,2081 |
(C2×C4).542C24 = C42.64C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).542C2^4 | 128,2082 |
(C2×C4).543C24 = C42.492C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).543C2^4 | 128,2083 |
(C2×C4).544C24 = C42.493C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).544C2^4 | 128,2084 |
(C2×C4).545C24 = C42.494C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).545C2^4 | 128,2085 |
(C2×C4).546C24 = C42.495C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).546C2^4 | 128,2086 |
(C2×C4).547C24 = C42.496C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).547C2^4 | 128,2087 |
(C2×C4).548C24 = C42.497C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).548C2^4 | 128,2088 |
(C2×C4).549C24 = C42.498C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).549C2^4 | 128,2089 |
(C2×C4).550C24 = Q8⋊4D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).550C2^4 | 128,2090 |
(C2×C4).551C24 = Q8⋊7SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).551C2^4 | 128,2091 |
(C2×C4).552C24 = C42.501C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).552C2^4 | 128,2092 |
(C2×C4).553C24 = C42.502C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).553C2^4 | 128,2093 |
(C2×C4).554C24 = Q8⋊8SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).554C2^4 | 128,2094 |
(C2×C4).555C24 = Q8⋊5Q16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).555C2^4 | 128,2095 |
(C2×C4).556C24 = C42.505C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).556C2^4 | 128,2096 |
(C2×C4).557C24 = C42.506C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).557C2^4 | 128,2097 |
(C2×C4).558C24 = C42.507C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).558C2^4 | 128,2098 |
(C2×C4).559C24 = C42.508C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).559C2^4 | 128,2099 |
(C2×C4).560C24 = C42.509C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).560C2^4 | 128,2100 |
(C2×C4).561C24 = C42.510C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).561C2^4 | 128,2101 |
(C2×C4).562C24 = C42.511C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).562C2^4 | 128,2102 |
(C2×C4).563C24 = C42.512C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).563C2^4 | 128,2103 |
(C2×C4).564C24 = C42.513C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).564C2^4 | 128,2104 |
(C2×C4).565C24 = C42.514C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).565C2^4 | 128,2105 |
(C2×C4).566C24 = C42.515C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).566C2^4 | 128,2106 |
(C2×C4).567C24 = C42.516C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).567C2^4 | 128,2107 |
(C2×C4).568C24 = C42.517C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).568C2^4 | 128,2108 |
(C2×C4).569C24 = C42.518C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).569C2^4 | 128,2109 |
(C2×C4).570C24 = Q8×D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).570C2^4 | 128,2110 |
(C2×C4).571C24 = Q8×SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).571C2^4 | 128,2111 |
(C2×C4).572C24 = D8⋊6Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).572C2^4 | 128,2112 |
(C2×C4).573C24 = SD16⋊4Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).573C2^4 | 128,2113 |
(C2×C4).574C24 = Q8×Q16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).574C2^4 | 128,2114 |
(C2×C4).575C24 = Q16⋊6Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).575C2^4 | 128,2115 |
(C2×C4).576C24 = D8⋊4Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).576C2^4 | 128,2116 |
(C2×C4).577C24 = SD16⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).577C2^4 | 128,2117 |
(C2×C4).578C24 = SD16⋊2Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).578C2^4 | 128,2118 |
(C2×C4).579C24 = Q16⋊4Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).579C2^4 | 128,2119 |
(C2×C4).580C24 = SD16⋊3Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).580C2^4 | 128,2120 |
(C2×C4).581C24 = D8⋊5Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).581C2^4 | 128,2121 |
(C2×C4).582C24 = Q16⋊5Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).582C2^4 | 128,2122 |
(C2×C4).583C24 = Q8⋊5D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).583C2^4 | 128,2123 |
(C2×C4).584C24 = Q8⋊9SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).584C2^4 | 128,2124 |
(C2×C4).585C24 = C42.527C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).585C2^4 | 128,2125 |
(C2×C4).586C24 = C42.528C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).586C2^4 | 128,2126 |
(C2×C4).587C24 = Q8⋊6Q16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).587C2^4 | 128,2127 |
(C2×C4).588C24 = C42.530C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).588C2^4 | 128,2128 |
(C2×C4).589C24 = C42.72C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).589C2^4 | 128,2129 |
(C2×C4).590C24 = C42.73C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).590C2^4 | 128,2130 |
(C2×C4).591C24 = C42.74C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).591C2^4 | 128,2131 |
(C2×C4).592C24 = C42.75C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).592C2^4 | 128,2132 |
(C2×C4).593C24 = C42.531C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).593C2^4 | 128,2133 |
(C2×C4).594C24 = C42.532C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).594C2^4 | 128,2134 |
(C2×C4).595C24 = C42.533C23 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).595C2^4 | 128,2135 |
(C2×C4).596C24 = C22×C4⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).596C2^4 | 128,2164 |
(C2×C4).597C24 = C22×C4⋊1D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).597C2^4 | 128,2172 |
(C2×C4).598C24 = C2×Q8⋊6D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).598C2^4 | 128,2199 |
(C2×C4).599C24 = D4×C4○D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).599C2^4 | 128,2200 |
(C2×C4).600C24 = C22.69C25 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).600C2^4 | 128,2212 |
(C2×C4).601C24 = C22.70C25 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).601C2^4 | 128,2213 |
(C2×C4).602C24 = C22.82C25 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).602C2^4 | 128,2225 |
(C2×C4).603C24 = C4⋊2- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).603C2^4 | 128,2229 |
(C2×C4).604C24 = C22×C8○D4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).604C2^4 | 128,2303 |
(C2×C4).605C24 = C2×Q8○M4(2) | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).605C2^4 | 128,2304 |
(C2×C4).606C24 = C4.22C25 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).606C2^4 | 128,2305 |
(C2×C4).607C24 = C23×D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).607C2^4 | 128,2306 |
(C2×C4).608C24 = C23×SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).608C2^4 | 128,2307 |
(C2×C4).609C24 = C23×Q16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).609C2^4 | 128,2308 |
(C2×C4).610C24 = C22×C4○D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).610C2^4 | 128,2309 |
(C2×C4).611C24 = C22×C8⋊C22 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).611C2^4 | 128,2310 |
(C2×C4).612C24 = C22×C8.C22 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).612C2^4 | 128,2311 |
(C2×C4).613C24 = C2×D8⋊C22 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).613C2^4 | 128,2312 |
(C2×C4).614C24 = C2×D4○D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).614C2^4 | 128,2313 |
(C2×C4).615C24 = C2×D4○SD16 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).615C2^4 | 128,2314 |
(C2×C4).616C24 = C2×Q8○D8 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).616C2^4 | 128,2315 |
(C2×C4).617C24 = Q8×C24 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).617C2^4 | 128,2321 |
(C2×C4).618C24 = C22×2- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).618C2^4 | 128,2324 |
(C2×C4).619C24 = C2×C2.C25 | φ: C24/C23 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).619C2^4 | 128,2325 |
(C2×C4).620C24 = C22×C8⋊C4 | central extension (φ=1) | 128 | | (C2xC4).620C2^4 | 128,1602 |
(C2×C4).621C24 = C2×C4×M4(2) | central extension (φ=1) | 64 | | (C2xC4).621C2^4 | 128,1603 |
(C2×C4).622C24 = C2×C8○2M4(2) | central extension (φ=1) | 64 | | (C2xC4).622C2^4 | 128,1604 |
(C2×C4).623C24 = M4(2)○2M4(2) | central extension (φ=1) | 32 | | (C2xC4).623C2^4 | 128,1605 |
(C2×C4).624C24 = C4×C8○D4 | central extension (φ=1) | 64 | | (C2xC4).624C2^4 | 128,1606 |
(C2×C4).625C24 = D4.5C42 | central extension (φ=1) | 64 | | (C2xC4).625C2^4 | 128,1607 |
(C2×C4).626C24 = C22×C22⋊C8 | central extension (φ=1) | 64 | | (C2xC4).626C2^4 | 128,1608 |
(C2×C4).627C24 = C2×C24.4C4 | central extension (φ=1) | 32 | | (C2xC4).627C2^4 | 128,1609 |
(C2×C4).628C24 = C2×(C22×C8)⋊C2 | central extension (φ=1) | 64 | | (C2xC4).628C2^4 | 128,1610 |
(C2×C4).629C24 = C24.73(C2×C4) | central extension (φ=1) | 32 | | (C2xC4).629C2^4 | 128,1611 |
(C2×C4).630C24 = D4○(C22⋊C8) | central extension (φ=1) | 32 | | (C2xC4).630C2^4 | 128,1612 |
(C2×C4).631C24 = C22×C4⋊C8 | central extension (φ=1) | 128 | | (C2xC4).631C2^4 | 128,1634 |
(C2×C4).632C24 = C2×C4⋊M4(2) | central extension (φ=1) | 64 | | (C2xC4).632C2^4 | 128,1635 |
(C2×C4).633C24 = C2×C42.6C22 | central extension (φ=1) | 64 | | (C2xC4).633C2^4 | 128,1636 |
(C2×C4).634C24 = C42.257C23 | central extension (φ=1) | 32 | | (C2xC4).634C2^4 | 128,1637 |
(C2×C4).635C24 = C42.674C23 | central extension (φ=1) | 64 | | (C2xC4).635C2^4 | 128,1638 |
(C2×C4).636C24 = C2×C42.12C4 | central extension (φ=1) | 64 | | (C2xC4).636C2^4 | 128,1649 |
(C2×C4).637C24 = C2×C42.6C4 | central extension (φ=1) | 64 | | (C2xC4).637C2^4 | 128,1650 |
(C2×C4).638C24 = C2×C42.7C22 | central extension (φ=1) | 64 | | (C2xC4).638C2^4 | 128,1651 |
(C2×C4).639C24 = C42.677C23 | central extension (φ=1) | 32 | | (C2xC4).639C2^4 | 128,1652 |
(C2×C4).640C24 = C42.259C23 | central extension (φ=1) | 32 | | (C2xC4).640C2^4 | 128,1653 |
(C2×C4).641C24 = C42.260C23 | central extension (φ=1) | 64 | | (C2xC4).641C2^4 | 128,1654 |
(C2×C4).642C24 = C42.261C23 | central extension (φ=1) | 64 | | (C2xC4).642C2^4 | 128,1655 |
(C2×C4).643C24 = C42.262C23 | central extension (φ=1) | 32 | | (C2xC4).643C2^4 | 128,1656 |
(C2×C4).644C24 = C42.678C23 | central extension (φ=1) | 64 | | (C2xC4).644C2^4 | 128,1657 |
(C2×C4).645C24 = D4×C2×C8 | central extension (φ=1) | 64 | | (C2xC4).645C2^4 | 128,1658 |
(C2×C4).646C24 = C2×C8⋊9D4 | central extension (φ=1) | 64 | | (C2xC4).646C2^4 | 128,1659 |
(C2×C4).647C24 = C2×C8⋊6D4 | central extension (φ=1) | 64 | | (C2xC4).647C2^4 | 128,1660 |
(C2×C4).648C24 = C42.264C23 | central extension (φ=1) | 32 | | (C2xC4).648C2^4 | 128,1661 |
(C2×C4).649C24 = C42.265C23 | central extension (φ=1) | 32 | | (C2xC4).649C2^4 | 128,1662 |
(C2×C4).650C24 = C42.681C23 | central extension (φ=1) | 64 | | (C2xC4).650C2^4 | 128,1663 |
(C2×C4).651C24 = C42.266C23 | central extension (φ=1) | 64 | | (C2xC4).651C2^4 | 128,1664 |
(C2×C4).652C24 = M4(2)⋊22D4 | central extension (φ=1) | 32 | | (C2xC4).652C2^4 | 128,1665 |
(C2×C4).653C24 = D4×M4(2) | central extension (φ=1) | 32 | | (C2xC4).653C2^4 | 128,1666 |
(C2×C4).654C24 = M4(2)⋊23D4 | central extension (φ=1) | 64 | | (C2xC4).654C2^4 | 128,1667 |
(C2×C4).655C24 = Q8×C2×C8 | central extension (φ=1) | 128 | | (C2xC4).655C2^4 | 128,1690 |
(C2×C4).656C24 = C2×C8⋊4Q8 | central extension (φ=1) | 128 | | (C2xC4).656C2^4 | 128,1691 |
(C2×C4).657C24 = C42.286C23 | central extension (φ=1) | 64 | | (C2xC4).657C2^4 | 128,1692 |
(C2×C4).658C24 = C42.287C23 | central extension (φ=1) | 64 | | (C2xC4).658C2^4 | 128,1693 |
(C2×C4).659C24 = M4(2)⋊9Q8 | central extension (φ=1) | 64 | | (C2xC4).659C2^4 | 128,1694 |
(C2×C4).660C24 = Q8×M4(2) | central extension (φ=1) | 64 | | (C2xC4).660C2^4 | 128,1695 |
(C2×C4).661C24 = C8×C4○D4 | central extension (φ=1) | 64 | | (C2xC4).661C2^4 | 128,1696 |
(C2×C4).662C24 = C42.290C23 | central extension (φ=1) | 64 | | (C2xC4).662C2^4 | 128,1697 |
(C2×C4).663C24 = C42.291C23 | central extension (φ=1) | 64 | | (C2xC4).663C2^4 | 128,1698 |
(C2×C4).664C24 = C42.292C23 | central extension (φ=1) | 64 | | (C2xC4).664C2^4 | 128,1699 |
(C2×C4).665C24 = C42.293C23 | central extension (φ=1) | 64 | | (C2xC4).665C2^4 | 128,1700 |
(C2×C4).666C24 = C42.294C23 | central extension (φ=1) | 64 | | (C2xC4).666C2^4 | 128,1701 |
(C2×C4).667C24 = D4⋊6M4(2) | central extension (φ=1) | 64 | | (C2xC4).667C2^4 | 128,1702 |
(C2×C4).668C24 = Q8⋊6M4(2) | central extension (φ=1) | 64 | | (C2xC4).668C2^4 | 128,1703 |
(C2×C4).669C24 = C42.691C23 | central extension (φ=1) | 32 | | (C2xC4).669C2^4 | 128,1704 |
(C2×C4).670C24 = C23⋊3M4(2) | central extension (φ=1) | 32 | | (C2xC4).670C2^4 | 128,1705 |
(C2×C4).671C24 = D4⋊7M4(2) | central extension (φ=1) | 32 | | (C2xC4).671C2^4 | 128,1706 |
(C2×C4).672C24 = C42.693C23 | central extension (φ=1) | 32 | | (C2xC4).672C2^4 | 128,1707 |
(C2×C4).673C24 = C42.297C23 | central extension (φ=1) | 32 | | (C2xC4).673C2^4 | 128,1708 |
(C2×C4).674C24 = C42.298C23 | central extension (φ=1) | 32 | | (C2xC4).674C2^4 | 128,1709 |
(C2×C4).675C24 = C42.299C23 | central extension (φ=1) | 32 | | (C2xC4).675C2^4 | 128,1710 |
(C2×C4).676C24 = C42.694C23 | central extension (φ=1) | 64 | | (C2xC4).676C2^4 | 128,1711 |
(C2×C4).677C24 = C42.300C23 | central extension (φ=1) | 64 | | (C2xC4).677C2^4 | 128,1712 |
(C2×C4).678C24 = C42.301C23 | central extension (φ=1) | 64 | | (C2xC4).678C2^4 | 128,1713 |
(C2×C4).679C24 = C42.695C23 | central extension (φ=1) | 64 | | (C2xC4).679C2^4 | 128,1714 |
(C2×C4).680C24 = C42.302C23 | central extension (φ=1) | 64 | | (C2xC4).680C2^4 | 128,1715 |
(C2×C4).681C24 = Q8.4M4(2) | central extension (φ=1) | 64 | | (C2xC4).681C2^4 | 128,1716 |
(C2×C4).682C24 = C42.696C23 | central extension (φ=1) | 64 | | (C2xC4).682C2^4 | 128,1717 |
(C2×C4).683C24 = C42.304C23 | central extension (φ=1) | 64 | | (C2xC4).683C2^4 | 128,1718 |
(C2×C4).684C24 = C42.305C23 | central extension (φ=1) | 64 | | (C2xC4).684C2^4 | 128,1719 |
(C2×C4).685C24 = C42.697C23 | central extension (φ=1) | 64 | | (C2xC4).685C2^4 | 128,1720 |
(C2×C4).686C24 = C42.698C23 | central extension (φ=1) | 64 | | (C2xC4).686C2^4 | 128,1721 |
(C2×C4).687C24 = D4⋊8M4(2) | central extension (φ=1) | 64 | | (C2xC4).687C2^4 | 128,1722 |
(C2×C4).688C24 = Q8⋊7M4(2) | central extension (φ=1) | 64 | | (C2xC4).688C2^4 | 128,1723 |
(C2×C4).689C24 = C42.307C23 | central extension (φ=1) | 64 | | (C2xC4).689C2^4 | 128,1724 |
(C2×C4).690C24 = C42.308C23 | central extension (φ=1) | 64 | | (C2xC4).690C2^4 | 128,1725 |
(C2×C4).691C24 = C42.309C23 | central extension (φ=1) | 64 | | (C2xC4).691C2^4 | 128,1726 |
(C2×C4).692C24 = C42.310C23 | central extension (φ=1) | 64 | | (C2xC4).692C2^4 | 128,1727 |
(C2×C4).693C24 = C2×C4×C4○D4 | central extension (φ=1) | 64 | | (C2xC4).693C2^4 | 128,2156 |
(C2×C4).694C24 = C23×M4(2) | central extension (φ=1) | 64 | | (C2xC4).694C2^4 | 128,2302 |